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Microscopic theory of the two-proton radioactivity
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Abstract. We formulate the microscopic theory of the two-proton radioactivity based on the real-energy
continuum shell model. This microscopic approach is applied to describe the two-proton decay from the
1−2 excited state in 18Ne.

PACS. 21.60.-n Nuclear structure models and methods – 27.20.+n Properties of specific nuclei listed by
mass ranges: 6 ≤ A ≤ 19

1 Introduction

Nuclear decays with three fragments in the final state are
very exotic processes. The two-proton (2p) radioactivity is
an example of such a process which can occur for even-Z
nuclei beyond the proton drip line: if the sequential decay
is energetically forbidden by pairing correlations, a simul-
taneous 2p decay becomes the only possible decay branch.
In spite of long lasting efforts, no fully convincing experi-
mental finding of this decay mode has been reported (see
however data on 2p radioactivity of the ground state of
45Fe [1,2,3] and of the second excited 1−2 state of 18Ne [4]).
Recently, we have developed a theory of 2p radioactivity
which is based on the extension of Shell Model Embedded
in the Continuum (SMEC) [5,6] for the two-particle con-
tinuum. In this approach, the configuration mixing in the
valence space is calculated microscopically and the asymp-
totic states are obtained in the S-matrix formalism [6].
This is in contrast to R-matrix based Shell Model (SM)
formalism [7] or cluster model which does not account for
the microscopic structure of the residual core nucleus [8].

2 Two-particle continuum in the shell-model
embedded in the continuum

The Hilbert space is divided in three subspaces: Q, P and
T . In Q subspace, A nucleons are distributed over (quasi-)
bound single-particle (qbsp) orbits. In P , one nucleon is
in the non-resonant continuum and A−1 nucleons occupy
qbsp orbits. In T , two nucleons are in the non-resonant
continuum and (A − 2) are in qbsp orbits. The coupling
between Q, P and T subspaces changes the “unperturbed”
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SM Hamiltonian (HQQ) in Q into the effective Hamilto-
nian:

H
(eff)
QQ = HQQ + HQTG

+
T (E)HTQ

+
[

HQP + HQTG
+
T (E)HTP

]

G̃
(+)
P (E)

×
[

HPQ + HPTG
(+)
T (E)HTQ

]

, (1)

where: G̃
(+)
P (E) = [E+ − HPP − HPTG

(+)
T (E)HTP ]−1 is

the Green’s function in P modified by the coupling to T ,

and G
(+)
T (E) = [E+ −HTT ]−1 is the Green’s function in

T . In the above equations, HPP , HTT are the unperturbed
Hamiltonians in P , T subspaces, respectively, and HQP ,
HPQ, HPT , HTP are the corresponding coupling terms
between Q, P , and T subspaces. The second term on the
r.h.s. of eq. (1) describes a di-proton emission, and the
third term describes the modification due to the mixing
of sequential 2p, di-proton and 1p decay modes. In solving

SMEC problem with H
(eff)
QQ , the radial single-particle wave

functions in Q and the scattering wave functions in P and
T are generated by a self-consistent procedure starting
with the average potential of Woods-Saxon type with the
spin-orbit and Coulomb parts included, and taking into
account the residual coupling between Q, P and Q, T
subspaces [5,6,9]. For the SM effective interaction in HQQ

we take either WBT or (psdfp) interaction [9].

2.1 Two-proton decay with three-body asymptotics

We consider the 2p decay mode from the 1−2 state in
18Ne at the excitation energy of 6.15 MeV. In the limit
of no coupling between P and T subspaces, the effective
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Fig. 1. The three-body Jacobi coordinate system. The hyper-
radius is ρ =

√

x2 + y2.

Hamiltonian (eq. (1)) reduces to [9]

H
(eff)
QQ = HQQ + HQPG

+
P (E)HPQ + HQTG

+
T (E)HTQ .

First, we calculate the contribution due to coupling with
one proton in the continuum of 17F

〈1−i |HQQ + HQPG
+
P (E)HPQ|1

−

j 〉,

which yields a “mixed” 1−2 state (φmix) of 18Ne. From this
state we go on to calculate the widths due to coupling with
the 2p continuum: 〈φmix|HQTG

+
T (E)HTQ|φ

mix〉. This can
be written formally as 〈w|ω〉, where 〈w| = 〈φmix|HQT is
identified as the source term and ω, which is an extension
of the discrete state wave function in the continuum and
is given by: |ω〉 = G+

T (E)HTQ|φ
mix〉. It is expanded in

hyperspherical harmonics (HH) 3-body Jacobi coordinate
system (see fig. 1):

ω(x,y) = ρ−5/2
∑

c≡(t,K,L,S,lx,ly)

ωc(ρ)Y
lx,ly
K,L,S(Ω5).

In the above equation, a channel (c) is specified by t
—a bound state of the (A− 2) residual nucleus, lx —the
relative angular momentum between the two protons, ly
—the relative angular momentum between the two pro-
tons and the (A− 2) nucleus, S-the total spin of the two
protons, L = lx⊗ly, and K-the hyper angular momentum.

Y
lx,ly
K,L,S(Ω5) is the HH function and ωc(ρ) is the solution of

inhomogeneous integro-differential coupled channel equa-
tions with the SM source wc(ρ):

[

−
h̄2

2m

(

d2

dρ2
−

(K + 3/2)(K + 5/2)

ρ2

)

− E

]

ωc(ρ) (2)

+
∑

c′

V loc
cc′ (ρ)ωc′(ρ)+

∑

c′

∫

dρ′V n-loc
cc′ (ρ′)ωc′(ρ

′)=wc(ρ).

In the above equation, the local potential V loc
cc′ (ρ) contains

the interactions between the two protons in continuum
states. The non-local potential V n-loc

cc′ (ρ′) in eq. (2) is a di-
rect consequence of accounting for the 2-body residual in-
teraction between the emitted protons and all the valence
particles in the (A − 2) residual nucleus. The Coulomb
problem is treated approximately by the use of Coulomb
functions of half-integer order with Sommerfeld parameter
corresponding to an “effective charge” in each hyperspher-
ical channel found by neglecting the off-diagonal Coulomb
matrix elements (which are much smaller than the diago-
nal ones) in the previous equation. In future studies, this

Table 1. Widths (Γ (seq)) and branching ratios (B(seq)) for the
sequential decay and widths (Γ (2p)) for di-proton cluster decay
with different SM effective interactions.

Interaction Γ (seq) B
(seq)

[17F∗(1/2+)]
Γ (2p)

(eV) (eV)

psdfp 88.80 92.80% 1.89
WBT 13.60 80.20% 1.01

will allow us to investigate the influence of the effective
SM interaction on the correlations between emitted pro-
tons and from that data extract information about the
pairing field in the parent nucleus.

2.2 Sequential and cluster emissions as limits of the
effective Hamiltonian (1)

In the limit of HQT (HTQ) being zero in eq. (1), we can
calculate the contribution of the sequential 2p emission
from the “mixed” 1−2 state (φmix) of 18Ne as

〈

φmix|HQP G̃
(+)
P (E)HPTG

(+)
T (E)HTPG

(+)
P (E)HPQ|φ

mix
〉

.

In another limit of eq. (1), we can also consider a clus-
ter emission of two protons with HPT (HTP ) being zero
and protons in the cluster being coupled to total spin
S = 0 and with relative orbital angular momentum be-
tween them (lx) to be zero. In this limit, s-wave final state
interaction in p + p intermediate system can be included
phenomenologically [10]. In both these limits the micro-
scopic structure of the residual nucleus is still accounted
for, although the asymptotics become 2-body. The widths

Γ (seq), and the branching ratios B
(seq)

[17F∗(1/2+
1
)]

to the 1/2+1

continuum states of 17F for the sequential decay, and the
widths for the di-proton cluster decay, for different SM ef-
fective interactions are shown in table 1, obtained with a
spin-exchange contact force residual interaction [9]. These
results indicate that the 2p decay in 18Ne is essentially
a sequential process. Strong dependence of Γ (seq) on the
SM effective interaction is found. The dominant contribu-
tion to Γ (seq) comes from the resonant continuum of the
weakly bound 1/2+1 state of 17F.

3 Conclusions

We have extended the SMEC to describe the 2p ra-
dioactivity. This fully microscopic approach with 3-body
asymptotics and with realistic finite range interactions will
allow us to study the relation between an effective NN in-
teraction and radial features of the pairing field, on one
side, and also the proton-proton correlations in the asymp-
totic state. The calculations for heavy 2p emitters are now
being pursued.
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